

MFDFA’s documentation

MFDFA is a python implementation of Multifractal Detrended Fluctuation Analysis, first developed by by Peng et al. ¹ and later extended to study multifractality MFDFA by Kandelhardt et al. ².

Installation

MFDFA is available from PyPI, so you can use

pip install MFDFA

Then on your favourite editor just use

from MFDFA import MFDFA

Warning

To use the extension to include Empirical Mode Decomposition detrending you will also need

pip install EMD-signal

An exemplary one-dimensional fractional Ornstein–Uhlenbeck process

For a more detailed explanation on how to integrate an Ornstein–Uhlenbeck process, see the kramersmoyal’s package [https://github.com/LRydin/KramersMoyal#a-one-dimensional-stochastic-process]
You can also follow the fOU.ipynb [https://github.com/LRydin/MFDFA/blob/master/examples/fOU.ipynb]

Generating a fractional Ornstein–Uhlenbeck process

This is one method of generating a (fractional) Ornstein–Uhlenbeck process with \(H=0.7\), employing a simple Euler–Maruyama integration method

Imports
from MFDFA import MFDFA
from MFDFA import fgn
where this second library is to generate fractional Gaussian noises

integration time and time sampling
t_final = 500
delta_t = 0.001

Some drift theta and diffusion sigma parameters
theta = 0.3
sigma = 0.1

The time array of the trajectory
time = np.arange(0, t_final, delta_t)

The fractional Gaussian noise
H = 0.7
dB = (t_final ** H) * fgn(N = time.size, H = H)

Initialise the array y
y = np.zeros([time.size])

Integrate the process
for i in range(1, time.size):
 y[i] = y[i-1] - theta * y[i-1] * delta_t + sigma * dB[i]

And now you have a fractional process with a self-similarity exponent \(H=0.7\)

Using the MFDFA

To now utilise the MFDFA, we take this exemplary process and run the (multifractal) detrended fluctuation analysis. For now lets consider only the monofractal case, so we need only \(q = 2\).

Select a band of lags, which usually ranges from
very small segments of data, to very long ones, as
lag = np.unique(np.logspace(0.5, 3, 100, dtype=int))

Notice these must be ints, since these will segment
the data into chucks of lag size

Select the power q
q = 2

The order of the polynomial fitting
order = 1

Obtain the (MF)DFA as
lag, dfa = MFDFA(y, lag = lag, q = q, order = order)

Now we need to visualise the results, which can be understood in a log-log scale. To find H we need to fit a line to the results in the log-log plot

To uncover the Hurst index, lets get some log-log plots
plt.loglog(lag, dfa, 'o', label='fOU: MFDFA q=2')

And now we need to fit the line to find the slope
in a double logaritmic scales, i.e., you need to
fit the logs of the results
H_hat = np.polyfit(np.log(lag)[4:20],np.log(dfa[4:20]),1)[0]

print('Estimated H = '+'{:.3f}'.format(H_hat[0]))

Now what you should obtain is: slope = H + 1

[image: MFDFA of a fractional Ornstein–Uhlenbeck process]

Multifractality in one dimensional distributions

To show how multifractality can be studied, let us take a sample of random numbers of a symmetric Lévy distribution [https://en.wikipedia.org/wiki/L%C3%A9vy_distribution].

Univariate random numbers from a Lévy stable distribution

To obtain a sample of random numbers of Lévy stable distributions, use scipy’s levy_stable. In particular, take an \(\alpha\)-stable distribution, with \(\alpha=1.5\)

Imports
from MFDFA import MFDFA
from scipy.stats import levy_stable

Generate 100000 points
alpha = 1.5
X = levy_stable.rvs(alpha=alpha, beta = 0, size=10000)

For MFDFA to detect the multifractal spectrum of the data, we need to vary the parameter \(q\in[-10,10]\) and exclude \(0\). Let us also use a quadratic polynomial fitting by setting order=2

Select a band of lags, which are ints
lag = np.unique(np.logspace(0.5, 3, 100).astype(int))

Select a list of powers q
q_list = np.linspace(-10,10,41)
q_list = q_list[q_list!=0.0]

The order of the polynomial fitting
order = 2

Obtain the (MF)DFA as
lag, dfa = MFDFA(y, lag = lag, q = q_list, order = order)

Again, we plot this in a double logarithmic scale, but now we include 6 curves, from 6 selected \(q={-10,-5-2,2,5,10}\). Include as well are the theoretical curves for \(q=-10\), with a slope of \(1/\alpha=1/1.5\) and \(q=10\), with a slope of \(1/q=1/10\)

[image: Plot of the MFDFA of a Lévy stable distribution for a few q values.]

Extensions

MFDFA as seen since its development a set of enhancements. In particular the usage of Empirical Mode Decomposition as a source of detrending, instead of polynomial fittings, which allows for a more precise removal of known trends in the timeseries.

Employing Empirical Mode Decompositions for detrending

Empirical Mode Decomposition [https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform] (EMD), or maybe more correctly described, the Hilbert─Huang transform is a transformation analogous to a Fourier or Hilbert transform that decomposes a one-dimensional timeseries or signal into its Intrinsic Mode Functions (IMFs).
For our purposes, we simply want to employ EMD to detrend a timeseries.

Warning

To use this feature, you need to first install PyEMD [https://github.com/laszukdawid/PyEMD] (EMD-signal) with

pip install EMD-signal

Understanding MFDFA’s EMD detrender

Take a timeseries y and extract the Intrinsic Mode Functions (IMFs)

Import
from MFDFA import IMFs

Extract the IMFs simply by employing
IMF = IMFs(y)

From here one obtains a (..., y.size). Best now to study the different IMFs is to plot them and the timeseries y

Import
import matplotlib.pyplot as plt

Plot the timeseries and the IMFs 6,7, and 8
plt.plot(X, color='black')
plt.plot(np.sum(IMF[[6,7,8],:], axis=0).T)

Using MFDFA with EMD

To now perform the multifractal detrended fluctuation analysis, simply insert the IMFs desired to be subtracted from the timeseries. This will also for order = 0, not to do any polynomial detrending.

Select a band of lags, which usually ranges from
very small segments of data, to very long ones, as
lag = np.logspace(0.7, 4, 30).astype(int)

Obtain the (MF)DFA by declaring the IMFs to subtract
in a list in the dictionary of the extensions
lag, dfa = MFDFA(y, lag = lag, extensions = {"EMD": [6,7,8]})

Extended Detrended Fluctuation Analysis

In the publication Detrended fluctuation analysis of cerebrovascular responses to abrupt changes in peripheral arterial pressure in rats. [https://doi.org/10.1016/j.cnsns.2020.105232] the authors introduce a new metric similar to the conventional Detrended Fluctuation Analysis (DFA) which they denote Extended Detrended Fluctuation Analysis (eDFA), which relies on extracting the difference of the minima and maxima for each segmentation of the data, granting a new power-law exponent to study, i.e., as in eq. (5) in the paper

\[\mathrm{d}F (n) = \mathrm{max}[F(n)] - \mathrm{min}[F(n)],\]

which in turn results in

\[\mathrm{d}F(n) \sim n^\beta.\]

Using MFDFA’s eDFA extension

To obtain the eDFA, simply set the extension to True and add a new output function, here denoted edfa

Select a band of lags, which usually ranges from
very small segments of data, to very long ones, as
lag = np.logspace(0.7, 4, 30).astype(int)

Obtain the (MF)DFA by declaring the IMFs to subtract
in a list in the dictionary of the extensions
lag, dfa, edfa = MFDFA(y, lag = lag, extensions = {'eDFA': True})

Moving window for segmentation

For short timeseries the segmentation of the data—especially for large lags—results in bad statistics, e.g. if a timeseries has 2048 datapoints and one wishes to study the flucutation analysis up to a lag of 512, only 4 segmentations of the data are possible for the lag 512. Instead one can use an moving window over the timeseries to obtain better statistics at large lags.

Using MFDFA’s window extension

To utilise a moving window one has to declare the moving windows step-size, i.e., the number of data points the window will move over the data. Say we wish to increase the statistics of the aforementioned example to include a moving window moving 32 steps (so one has 64 segments at a lag of 512)

Select a band of lags, which usually ranges from
very small segments of data, to very long ones, as
lag = np.logspace(0.7, 4, 30).astype(int)

Obtain the (MF)DFA by declaring the IMFs to subtract
in a list in the dictionary of the extensions
lag, dfa, edfa = MFDFA(y, lag = lag, extensions = {'window': 32})

Literature

¹ Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., & Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Physical Review E, 49(2), 1685–1689 [https://doi.org/10.1103/PhysRevE.49.1685]

² Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley, H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and Its Applications, 316(1-4), 87–114 [https://doi.org/10.1016/S0378-4371(02)01383-3]

Funding

Helmholtz Association Initiative Energy System 2050 - A Contribution of the Research Field Energy and the grant No. VH-NG-1025, STORM - Stochastics for Time-Space Risk Models project of the Research Council of Norway (RCN) No. 274410, and the E-ON Stipendienfonds.

Table of Content

Installation

MFDFA is available from PyPI, so you can use

pip install MFDFA

Then on your favourite editor just use

from MFDFA import MFDFA

Warning

To use the extension to include Empirical Mode Decomposition detrending you will also need

pip install EMD-signal

An exemplary one-dimensional fractional Ornstein–Uhlenbeck process

For a more detailed explanation on how to integrate an Ornstein–Uhlenbeck process, see the kramersmoyal’s package [https://github.com/LRydin/KramersMoyal#a-one-dimensional-stochastic-process]
You can also follow the fOU.ipynb [https://github.com/LRydin/MFDFA/blob/master/examples/fOU.ipynb]

Generating a fractional Ornstein–Uhlenbeck process

This is one method of generating a (fractional) Ornstein–Uhlenbeck process with \(H=0.7\), employing a simple Euler–Maruyama integration method

Imports
from MFDFA import MFDFA
from MFDFA import fgn
where this second library is to generate fractional Gaussian noises

integration time and time sampling
t_final = 500
delta_t = 0.001

Some drift theta and diffusion sigma parameters
theta = 0.3
sigma = 0.1

The time array of the trajectory
time = np.arange(0, t_final, delta_t)

The fractional Gaussian noise
H = 0.7
dB = (t_final ** H) * fgn(N = time.size, H = H)

Initialise the array y
y = np.zeros([time.size])

Integrate the process
for i in range(1, time.size):
 y[i] = y[i-1] - theta * y[i-1] * delta_t + sigma * dB[i]

And now you have a fractional process with a self-similarity exponent \(H=0.7\)

Using the MFDFA

To now utilise the MFDFA, we take this exemplary process and run the (multifractal) detrended fluctuation analysis. For now lets consider only the monofractal case, so we need only \(q = 2\).

Select a band of lags, which usually ranges from
very small segments of data, to very long ones, as
lag = np.unique(np.logspace(0.5, 3, 100, dtype=int))

Notice these must be ints, since these will segment
the data into chucks of lag size

Select the power q
q = 2

The order of the polynomial fitting
order = 1

Obtain the (MF)DFA as
lag, dfa = MFDFA(y, lag = lag, q = q, order = order)

Now we need to visualise the results, which can be understood in a log-log scale. To find H we need to fit a line to the results in the log-log plot

To uncover the Hurst index, lets get some log-log plots
plt.loglog(lag, dfa, 'o', label='fOU: MFDFA q=2')

And now we need to fit the line to find the slope
in a double logaritmic scales, i.e., you need to
fit the logs of the results
H_hat = np.polyfit(np.log(lag)[4:20],np.log(dfa[4:20]),1)[0]

print('Estimated H = '+'{:.3f}'.format(H_hat[0]))

Now what you should obtain is: slope = H + 1

[image: MFDFA of a fractional Ornstein–Uhlenbeck process]

Multifractality in one dimensional distributions

To show how multifractality can be studied, let us take a sample of random numbers of a symmetric Lévy distribution [https://en.wikipedia.org/wiki/L%C3%A9vy_distribution].

Univariate random numbers from a Lévy stable distribution

To obtain a sample of random numbers of Lévy stable distributions, use scipy’s levy_stable. In particular, take an \(\alpha\)-stable distribution, with \(\alpha=1.5\)

Imports
from MFDFA import MFDFA
from scipy.stats import levy_stable

Generate 100000 points
alpha = 1.5
X = levy_stable.rvs(alpha=alpha, beta = 0, size=10000)

For MFDFA to detect the multifractal spectrum of the data, we need to vary the parameter \(q\in[-10,10]\) and exclude \(0\). Let us also use a quadratic polynomial fitting by setting order=2

Select a band of lags, which are ints
lag = np.unique(np.logspace(0.5, 3, 100).astype(int))

Select a list of powers q
q_list = np.linspace(-10,10,41)
q_list = q_list[q_list!=0.0]

The order of the polynomial fitting
order = 2

Obtain the (MF)DFA as
lag, dfa = MFDFA(y, lag = lag, q = q_list, order = order)

Again, we plot this in a double logarithmic scale, but now we include 6 curves, from 6 selected \(q={-10,-5-2,2,5,10}\). Include as well are the theoretical curves for \(q=-10\), with a slope of \(1/\alpha=1/1.5\) and \(q=10\), with a slope of \(1/q=1/10\)

[image: Plot of the MFDFA of a Lévy stable distribution for a few q values.]

Extensions

MFDFA as seen since its development a set of enhancements. In particular the usage of Empirical Mode Decomposition as a source of detrending, instead of polynomial fittings, which allows for a more precise removal of known trends in the timeseries.

Employing Empirical Mode Decompositions for detrending

Empirical Mode Decomposition [https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform] (EMD), or maybe more correctly described, the Hilbert─Huang transform is a transformation analogous to a Fourier or Hilbert transform that decomposes a one-dimensional timeseries or signal into its Intrinsic Mode Functions (IMFs).
For our purposes, we simply want to employ EMD to detrend a timeseries.

Warning

To use this feature, you need to first install PyEMD [https://github.com/laszukdawid/PyEMD] (EMD-signal) with

pip install EMD-signal

Understanding MFDFA’s EMD detrender

Take a timeseries y and extract the Intrinsic Mode Functions (IMFs)

Import
from MFDFA import IMFs

Extract the IMFs simply by employing
IMF = IMFs(y)

From here one obtains a (..., y.size). Best now to study the different IMFs is to plot them and the timeseries y

Import
import matplotlib.pyplot as plt

Plot the timeseries and the IMFs 6,7, and 8
plt.plot(X, color='black')
plt.plot(np.sum(IMF[[6,7,8],:], axis=0).T)

Using MFDFA with EMD

To now perform the multifractal detrended fluctuation analysis, simply insert the IMFs desired to be subtracted from the timeseries. This will also for order = 0, not to do any polynomial detrending.

Select a band of lags, which usually ranges from
very small segments of data, to very long ones, as
lag = np.logspace(0.7, 4, 30).astype(int)

Obtain the (MF)DFA by declaring the IMFs to subtract
in a list in the dictionary of the extensions
lag, dfa = MFDFA(y, lag = lag, extensions = {"EMD": [6,7,8]})

Extended Detrended Fluctuation Analysis

In the publication Detrended fluctuation analysis of cerebrovascular responses to abrupt changes in peripheral arterial pressure in rats. [https://doi.org/10.1016/j.cnsns.2020.105232] the authors introduce a new metric similar to the conventional Detrended Fluctuation Analysis (DFA) which they denote Extended Detrended Fluctuation Analysis (eDFA), which relies on extracting the difference of the minima and maxima for each segmentation of the data, granting a new power-law exponent to study, i.e., as in eq. (5) in the paper

\[\mathrm{d}F (n) = \mathrm{max}[F(n)] - \mathrm{min}[F(n)],\]

which in turn results in

\[\mathrm{d}F(n) \sim n^\beta.\]

Using MFDFA’s eDFA extension

To obtain the eDFA, simply set the extension to True and add a new output function, here denoted edfa

Select a band of lags, which usually ranges from
very small segments of data, to very long ones, as
lag = np.logspace(0.7, 4, 30).astype(int)

Obtain the (MF)DFA by declaring the IMFs to subtract
in a list in the dictionary of the extensions
lag, dfa, edfa = MFDFA(y, lag = lag, extensions = {'eDFA': True})

Moving window for segmentation

For short timeseries the segmentation of the data—especially for large lags—results in bad statistics, e.g. if a timeseries has 2048 datapoints and one wishes to study the flucutation analysis up to a lag of 512, only 4 segmentations of the data are possible for the lag 512. Instead one can use an moving window over the timeseries to obtain better statistics at large lags.

Using MFDFA’s window extension

To utilise a moving window one has to declare the moving windows step-size, i.e., the number of data points the window will move over the data. Say we wish to increase the statistics of the aforementioned example to include a moving window moving 32 steps (so one has 64 segments at a lag of 512)

Select a band of lags, which usually ranges from
very small segments of data, to very long ones, as
lag = np.logspace(0.7, 4, 30).astype(int)

Obtain the (MF)DFA by declaring the IMFs to subtract
in a list in the dictionary of the extensions
lag, dfa, edfa = MFDFA(y, lag = lag, extensions = {'window': 32})

Functions

MFDFA

	
MFDFA.MFDFA.MFDFA(timeseries: numpy.ndarray, lag: numpy.ndarray, order: int = 1, q: numpy.ndarray = 2, stat: bool = False, modified: bool = False, extensions: dict = {'EMD': False, 'eDFA': False, 'window': False}) → Tuple[numpy.array, numpy.ndarray]

	Multifractal Detrended Fluctuation Analysis of timeseries. MFDFA generates
a fluctuation function F²(q,s), with s the segment size and q the q-powers,
Take a timeseries Xₜ, find the integral Yₜ = cumsum(Xₜ), and segment the
timeseries into Nₛ segments of size s.

\[F^2(v,s) = \dfrac{1}{s} \sum_{i=1}^s [Y_{(v-1)s + i} - y_{v,i}]^2,
~\mathrm{for}~v=1,2, \dots, N_s,\]

with \(y_{v,i}\) the polynomial fittings of order m. Having obtained
the variances of each (detrended) segment, average over s and increase s,
to obtain the fluctuation function \(F_q^2(s)\) depending on the
segment length.

\[F_q^2(s) = \Bigg\{\dfrac{1}{N_s} \sum_{v=1}^{N_s}
[F^2(v,s)]^{q/2}\Bigg\}^{1/q}\]

The fluctuation function \(F_q^2(s)\) can now be plotted in a log-log
scale, the slope of the fluctuation function \(F_q^2(s)\) vs the
s-segment size is the self-similarity scaling \(h(q)\)

\[F_q^2(s) \sim s^{h(q)}.\]

If \(H ≈ 0\) in a monofractal series, use a second integration
step by setting modified = True.

	Parameters

	
	timeseries (np.ndarray) – A 1-dimensional timeseries (N, 1). The timeseries of length N.

	lag (np.ndarray of ints) – An array with the window sizes to calculate (ints). Notice
min(lag) > order + 1 given a polynomial fit of order m needs at
least m points. The results are meaningless for ‘order = m’ and for
lag > size of data / 4 since there is low statistics with < 4 windows
to divide the timeseries.

	order (int (default 1)) – The order of the polynomials to approximate. order = 1 is the DFA1,
which is a least-square fit of the data with a first order polynomial
(a line), order = 2 is a second-order polynomial, etc..
order = 0 skips the detrending process and hence gives the
non-detrended fluctuation functions, i.e., simply Fluctuation Analysis.

	q (np.ndarray (default 2)) – Fractal exponent to calculate. Array in [-10,10]. The values = 0
will be removed, since the code does not converge there. q = 2 is
the standard Detrended Fluctuation Analysis as is set a default.

	stat (bool (default False)) – Calculates the standard deviation associated with each segment’s
averaging.

	modified (bool (default False)) – For data with the Hurst index ≈ 0, i.e., strongly anticorrelated, a
standard MFDFA will result in inacurate results, thus a further
integration of the timeseries yields a modified scaling coefficient.

	extensions (dict) –
	
	EMD: list (default False)

	If not None, requires a list of indices of the user-chosen IMFs
obtained from an (externally performed) EMD analysis. The indexing
starts from 0. Will enforce order = 0 since there is no need
for a polynomial detrending.

	
	eDFA: bool (default False)

	A method to evaluate the strength of multifractality. Calls function
eDFA().

	
	window: bool (default False)

	A moving window for smaller timeseries. Set window as int > 0 with
the number of steps the window shoud move over the data. window = 1
will move window by 1 step. Since the timeseries is segmented at
each lag lenght, any window choise > lag is only segmented once.

	Returns

	
	lag (np.ndarray of ints) – Array of lags, realigned, preserving only different lags and with
entries > order + 1

	f (np.ndarray) – A array of shape (size(lag),size(q)) of variances over the indicated
lag windows and the indicated q-fractal powers.

References

	Peng1994

	C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E.
Stanley, and A. L. Goldberger. “Mosaic organization of DNA
nucleotides.” Phys. Rev. E, 49(2), 1685–1689, 1994.

	Kantelhardt2002

	J. W. Kantelhardt, S. A. Zschiegner, E.
Koscielny-Bunde, S. Havlin, A. Bunde, H. E. Stanley. “Multifractal
detrended fluctuation analysis of nonstationary time series.” Physica
A, 316(1-4), 87–114, 2002.

	
MFDFA.MFDFA.eDFA(F: numpy.ndarray) → numpy.ndarray

	In the reference indicated below a measure of nonstationarity was added by
including a subsequent calculation of the extrema of the DFA. Denoted
\(dF_q^2(s)\) the difference of the extrema at each segment, i.e.,

\[dF_q^2(s) = \max[F_q^2(s)] - \min[F_q^2(s)]\]

	Parameters

	F (np.ndarray) – Fluctuation function given by the MFDFA().

	Returns

	res – Difference of max and min.

	Return type

	np.ndarray

Notes

New in version 0.3.

References

	Pavlov2020

	A. N. Pavlov, A. S. Abdurashitov, A. A. Koronovskii Jr., O.
N. Pavlova, O. V. Semyachkina-Glushkovskaya, and J. Kurths. “Detrended
fluctuation analysis of cerebrovascular responses to abrupt changes in
peripheral arterial pressure in rats.” CNSNS 85, 105232, 2020

Empirical Mode Decomposition for detrending timeseries

	
MFDFA.emddetrender.detrendedtimeseries(timeseries: numpy.ndarray, modes: list) → numpy.ndarray

	The function calculates the Intrinsic Mode Functions (IMFs) of a given
timeseries, subtracts the user-chosen IMFs for detrending, and returns the
detrended timeseries. Based on based on Dawid Laszuk’s PyEMD found at
https://github.com/laszukdawid/PyEMD

	Parameters

	
	timeseries (np.ndarray) – A 1-dimensional timeseries of length N.

	modes (list) – List of integers indicating the indices of the IMFs to be
subtracted/detrended from the timeseries.

	Returns

	detrendedTimeseries – Detrended 1-dimensional timeseries.

	Return type

	np.ndarray

Warning

To use the extension Empirical Mode Decomposition for detrending, the
pyEMD library is needed.

pip install EMD-signal

Notes

New in version 0.3.

References

	Huang1998

	N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q.
Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode
decomposition and the Hilbert spectrum for non-linear and non
stationary time series analysis”, Proc. Royal Soc. London A, Vol. 454,
pp. 903-995, 1998.

	Rilling2003

	G. Rilling, P. Flandrin, and P. Goncalves, “On Empirical
Mode Decomposition and its algorithms”, IEEE-EURASIP Workshop on
Nonlinear Signal and Image Processing NSIP-03, Grado (I), June 2003.

	
MFDFA.emddetrender.IMFs(timeseries: numpy.ndarray) → numpy.ndarray

	Extract the Intrinsic Mode Functions (IMFs) of a given timeseries.

	Parameters

	timeseries (np.ndarray) – A 1-dimensional timeseries of length N.

Notes

New in version 0.3.

	Returns

	IMFs – The Intrinsic Mode Functions (IMFs) of the Empirical Mode
Decomposition. These are of shape (…, timeseries.size), with the
first dimension varying depending on the data. Last entry is the
residuals.

	Return type

	np.ndarray

Fractional Gaussian noise

	
MFDFA.fgn.fgn(N: int, H: float) → numpy.ndarray

	Generates fractional Gaussian noise with a Hurst index H in (0,1). If
H = 1/2 this is simply Gaussian noise.
The current method employed is the Davies–Harte method, which fails for
H ≈ 0. A Cholesky decomposition method and the Hosking’s method will be
implemented in later versions.

	Parameters

	
	N (int) – Size of fractional Gaussian noise to generate.

	H (float) – Hurst exponent H in (0,1).

	Returns

	f – A array of size N of fractional Gaussian noise with a Hurst index H.

	Return type

	np.ndarray

License

MIT License

Copyright (c) 2019-2022 Leonardo Rydin Gorjão

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Contact

If you need help with something, find a bug, issue, or typo on the repository
or in the code, you can contact me here: leonardo.rydin@gmail.com or open an
issue on the GitHub repository.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 MFDFA	

 	
 	
 MFDFA.emddetrender	

 	
 	
 MFDFA.fgn	

 	
 	
 MFDFA.MFDFA	

Index

 D
 | E
 | F
 | I
 | M

D

 	
 	detrendedtimeseries() (in module MFDFA.emddetrender)

E

 	
 	eDFA() (in module MFDFA.MFDFA)

F

 	
 	fgn() (in module MFDFA.fgn)

I

 	
 	IMFs() (in module MFDFA.emddetrender)

M

 	
 	MFDFA() (in module MFDFA.MFDFA)

 	MFDFA.emddetrender (module)

 	
 	MFDFA.fgn (module)

 	MFDFA.MFDFA (module)

Employing Empirical Mode Decompositions for detrending

Empirical Mode Decomposition [https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform] (EMD), or maybe more correctly described, the Hilbert─Huang transform is a transformation analogous to a Fourier or Hilbert transform that decomposes a one-dimensional timeseries or signal into its Intrinsic Mode Functions (IMFs).
For our purposes, we simply want to employ EMD to detrend a timeseries.

Warning

To use this feature, you need to first install PyEMD [https://github.com/laszukdawid/PyEMD] (EMD-signal) with

pip install EMD-signal

Understanding MFDFA’s EMD detrender

Take a timeseries y and extract the Intrinsic Mode Functions (IMFs)

Import
from MFDFA import IMFs

Extract the IMFs simply by employing
IMF = IMFs(y)

From here one obtains a (..., y.size). Best now to study the different IMFs is to plot them and the timeseries y

Import
import matplotlib.pyplot as plt

Plot the timeseries and the IMFs 6,7, and 8
plt.plot(X, color='black')
plt.plot(np.sum(IMF[[6,7,8],:], axis=0).T)

Using MFDFA with EMD

To now perform the multifractal detrended fluctuation analysis, simply insert the IMFs desired to be subtracted from the timeseries. This will also for order = 0, not to do any polynomial detrending.

Select a band of lags, which usually ranges from
very small segments of data, to very long ones, as
lag = np.logspace(0.7, 4, 30).astype(int)

Obtain the (MF)DFA by declaring the IMFs to subtract
in a list in the dictionary of the extensions
lag, dfa = MFDFA(y, lag = lag, extensions = {"EMD": [6,7,8]})

Extended Detrended Fluctuation Analysis

In the publication Detrended fluctuation analysis of cerebrovascular responses to abrupt changes in peripheral arterial pressure in rats. [https://doi.org/10.1016/j.cnsns.2020.105232] the authors introduce a new metric similar to the conventional Detrended Fluctuation Analysis (DFA) which they denote Extended Detrended Fluctuation Analysis (eDFA), which relies on extracting the difference of the minima and maxima for each segmentation of the data, granting a new power-law exponent to study, i.e., as in eq. (5) in the paper

\[\mathrm{d}F (n) = \mathrm{max}[F(n)] - \mathrm{min}[F(n)],\]

which in turn results in

\[\mathrm{d}F(n) \sim n^\beta.\]

Using MFDFA’s eDFA extension

To obtain the eDFA, simply set the extension to True and add a new output function, here denoted edfa

Select a band of lags, which usually ranges from
very small segments of data, to very long ones, as
lag = np.logspace(0.7, 4, 30).astype(int)

Obtain the (MF)DFA by declaring the IMFs to subtract
in a list in the dictionary of the extensions
lag, dfa, edfa = MFDFA(y, lag = lag, extensions = {'eDFA': True})

Moving window for segmentation

For short timeseries the segmentation of the data—especially for large lags—results in bad statistics, e.g. if a timeseries has 2048 datapoints and one wishes to study the flucutation analysis up to a lag of 512, only 4 segmentations of the data are possible for the lag 512. Instead one can use an moving window over the timeseries to obtain better statistics at large lags.

Using MFDFA’s window extension

To utilise a moving window one has to declare the moving windows step-size, i.e., the number of data points the window will move over the data. Say we wish to increase the statistics of the aforementioned example to include a moving window moving 32 steps (so one has 64 segments at a lag of 512)

Select a band of lags, which usually ranges from
very small segments of data, to very long ones, as
lag = np.logspace(0.7, 4, 30).astype(int)

Obtain the (MF)DFA by declaring the IMFs to subtract
in a list in the dictionary of the extensions
lag, dfa, edfa = MFDFA(y, lag = lag, extensions = {'window': 32})

 _images/fig2.png
Fq4(s)

10° -

102 -
101+

100

A
q:
-1
0 Og=
-5V
q:
— 2

| <
q=2
Oq=5
>
q:
10

102
lag s 163 N
10¢

_static/ajax-loader.gif

_images/fig1.png
Fq4(s)

10?1

100

&

fOU:H=0.7,q=2

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 MFDFA’s documentation

_static/file.png

_static/minus.png

_static/fig1.png
Fq4(s)

10?1

100

&

fOU:H=0.7,q=2

_static/fig2.png
Fq4(s)

10° -

102 -
101+

100

A
q:
-1
0 Og=
-5V
q:
— 2

| <
q=2
Oq=5
>
q:
10

102
lag s 163 N
10¢

_static/up-pressed.png

_static/up.png

_static/plus.png

